AI ≠ 人工 + 智慧
模擬人類微笑的Amazon彎曲箭頭背後,誰受益、誰為此犧牲?
為何Google不惜一切代價避免提到或暗示人工智慧?
從沙漠到海洋,從岩石到城市,從樹木到超大型企業,從跨洋航線到原子彈,
誰在AI後面?誰背叛了AI?
――――――
從神話到魔化,從地球、雲端到太空,破解AI背後的6個祕密,探索人工智慧的另一種可能!
當代AI研究先驅、微軟研究院資深首席研究員
第一手揭露人工智慧豐功偉業背後的陰暗面!
――――――
▌幽靈代價,我們為AI付出了什麼?
◎人工智慧既非人工的,也不是智慧的,那些看似萬能的智慧是如何「製造」出來的?
◎從內華達沙漠到內蒙古巨大的人工湖、從亞馬遜倉庫到太空殖民,直擊人工智慧帝國全景地圖!
◎人工智慧充滿隱藏成本,從自然資源和勞力到隱私和自由都是代價,深入了解我們為人工智慧付出了什麼?
◎人類為人工智慧制定的倫理架構非常失敗,程式碼和演算法並非致命毒藥,那麼到底哪裡出了錯?
▌「AI」,一個兩字的短語,隱含了一則神話和六個幽靈!
當我們跟Siri聊天、開著特斯拉電動車上路、用Google搜尋、上傳IG自拍、觀看抖音影片,以為自己生活在人工智慧的美好新世界,但事實上許多看似有價值的自動化系統能運作,背後都隱藏著幽靈。運行一個自然語言處理模型產生的二氧化碳排放量,相當於從紐約搭機往返北京125次!精心打造的魔鬼細節,讓我們相信智慧機器在做那些神奇的工作。
人工智慧不只是演算法、資料與硬體的混合物,它關乎自然界、政治、歷史,有時甚至也和美有關。當人工智慧滲入政治生活、耗盡地球之時,會發生什麼事?人工智慧如何形塑我們對自己及對社會的理解?
本書作者凱特•克勞馥是當代對人工智慧的影響最深思熟慮的研究者之一,以人文主義者的眼光、藝術家的感知、科學家的嚴謹,揭露人工智慧真實的樣貌。她憑藉十多年的研究,揭示了人工智慧神話背後隱藏了什麼,從打造與支持人工智慧基礎設施所需的能源和礦物、剝削「自動化」服務背後的勞工,到人工智慧從我們身上取得的資料,破除人工智慧的迷思。
全書以地圖集的概念來看待人工智慧,提供我們重新閱讀世界的可能性。在人工智慧的地景中,我們會造訪礦坑、耗能資料中心裡長長的走廊、顱骨檔案庫、影像資料庫,以及日光燈照亮的物流倉庫,了解每一種分類都有自己的後果。世界上最富有公司的人工智慧系統正榨取各種資源,將人類的思考能力商品化,以服務當代科技的一瞬間。
沒有單一的黑盒子,沒有單純的祕密,錯綜複雜的權力系統交織,映射了一組複雜的期望、意識形態、欲望和恐懼!
| 目錄 |
【序言】
世界上最聰明的馬
什麼是人工智慧?既非人工的,也不是智慧的
把人工智慧視為一部地圖集
運算地形學
採掘、權力與政治
【第一章 地球】
為人工智慧採礦
運算的地景
礦物層次
黑色湖泊與白色乳膠
潔淨科技的迷思
物流層次
人工智慧即巨機器
【第二章 勞工】
人工智慧出現之前的工作場所
波坦金人工智慧與「土耳其機器人」
肢解線與工作場所自動化的願景:巴貝奇、福特和泰勒
肉品市場
管理時間,私有化時間
私有時間
設定速度
【第三章 資料】
訓練機器觀看
資料需求簡史
擷取臉部
從Internet到ImageNet
不必再取得同意
資料的迷思與隱喻
與倫理保持距離
擷取共有財
【第四章 分類】
循環邏輯系統
去偏誤系統的侷限
關於偏誤的多種定義
訓練集作為分類引擎:以ImageNet為例
對「人」下定義的權力
建構種族和性別
測量的侷限性
【第五章 情感】
情緒先知:當感覺化為利益
「世界上最著名的臉部解讀者」
情感:從面相學到攝影
捕捉感覺:表現情緒的詭計
關於艾克曼理論的多項批評
臉部的政治
【第六章 國家】
進行第三次抵銷
行家計畫的實行
委外的國家
從恐怖分子信用評分到社會信用評分
纏結的乾草堆
【結語 權力】
沒有邊界的遊戲
人工智慧的管線
地圖不是領土
邁向正義的連結運動
【尾聲 太空】
致謝
參考書目
| 內容節錄 |
◎黑色湖泊與白色乳膠 包頭是內蒙古最大的城市,這裡有一座人工湖,裡面充滿有毒的黑泥。它散發出硫磺惡臭,一望無際,直徑超過八點八公里。這座烏黑的湖泊含有超過一億八千萬噸選礦(ore processing)產生的廢粉,來自附近白雲鄂博礦區的廢物徑流。根據估計,這座礦區含有全球近七成的稀土礦產儲量,是地球上最大的稀土元素礦床。 世界上百分之九十五的稀土礦產由中國供應。如作家莫恩(Tim Maughan)所言,中國能成為市場龍頭與其說是地質因素,不如說是中國願意承擔採掘對環境造成的傷害。雖然釹和鈰等稀土礦物相對常見,但要讓這些礦物能使用,必須運用會造成危害的過程,將它們溶解在大量的硫酸和硝酸中。這些酸液造成有毒廢水蓄積,填滿包頭的死水湖。環境研究學者赫德(Myra Hird)稱這種地方充滿「我們想遺忘的廢棄物」,包頭只是其中一地。 迄今為止,稀土元素在電子、光學和磁性方面有獨一無二的用途,任何其他金屬都無法匹敵,但可用礦物與有毒廢棄物的比例卻很極端。自然資源策略專家大衛・亞伯拉罕(David Abraham)談到在中國江西開採鏑和鋱的情況,它們用於各種高科技裝置。他寫道:「開採出來的黏土中僅百分之零點二含有珍貴的稀土元素。這表示,開採稀土元素時,百分之九十九點八去除的泥土被當成廢棄物丟棄,這些稱為『尾礦』的土被傾倒回山丘和溪流」,產生銨等新汙染物。為了提煉一噸稀土元素,「中國稀土學會估計,這過程會產生七萬五千公升酸性水,以及一噸的放射性殘留物」。 在包頭以南約四千八百公里處,是印尼蘇門答臘海岸附近的小島邦加島(Bangka)和勿里洞島(Belitung)。邦加島和勿里洞島生產的錫占印尼的百分之九十,用於半導體。印尼是僅次於中國的世界第二大產錫國,印尼國有錫業集團公司(PT Timah)直接供應三星等公司,也供應晟楠、昇貿等焊錫材料廠,這些廠商之後再供應產品給索尼(Sony)、LG、富士康——這些都是Apple、特斯拉和亞馬遜的供應商。
在這些小島上,未得到正式雇用的灰市礦工坐在臨時湊合成的浮式碼頭上,用竹篙刮海床,然後潛入水下,用類似真空管的巨型管子深吸氣,吸取海底的錫。礦工把找到的錫賣給仲介者,而這些仲介者也從在經授權的礦場工作的礦工那裡收集礦石,把兩種來源的錫混合起來,出售給錫業集團公司之類的企業。由於完全不受監管,這過程在沒有任何正式工人或環境保護的情況下展開。正如調查記者何黛爾(Kate Hodal)的報導,「錫礦採掘是有利可圖卻具毀滅性的交易,破壞了這座島的景觀、夷平農場和森林,殺死了魚群和珊瑚礁,對觀光業棕櫚樹成蔭的美麗海灘帶來不利的影響。從空中鳥瞰最能看出損害程度,蓊鬱的森林被大片光禿禿的橘色土地包圍。在沒有礦場聳立的地方,布滿坑坑巴巴的墳墓,許多是葬著幾世紀以來挖掘錫礦時死去的礦工遺體。」這樣的礦場隨處可見:在後院、在森林、在路邊、在海灘。這是一片廢墟的地景。 我們通常的生活習慣是把焦點放在眼前的世界,也就是每天所見、所聞、所觸摸到的世界。我們穩定立足於此,在這裡有自己的社群、知悉的角落,也有關注的重點。但如果要探查完整的人工智慧供應鏈,需要在全球範圍內尋找模式,敏銳地看出歷史和具體的危害是因地而異,同時又因多種採掘力量而深刻地聯繫在一起。 ◎物流層次 當我進入亞馬遜位於紐澤西州羅賓斯維爾鎮(Robbinsville)廣闊的履行中心(fulfillment center),最先映入眼簾的是個斗大的標誌,上面寫著「打卡機」(Time Clock)。這個標誌從占地三千三百七十多坪的混凝土空間中,諸多鮮黃色支架突出。這是亞馬遜小型物件的主要配送倉庫,也是美國東北部的中央配送節點。它呈現出當代物流和標準化令人目眩的奇景,其設計是為了加速包裹遞送。入口通道有幾十個打卡機標誌,每隔固定距離就會出現。每一秒的工作都被監控和記錄。工人——稱為「夥伴」(associate)——一進到倉庫就要掃描自己。日光燈照亮的茶水間裡沒什麼人,但也設有打卡機——更多標誌凸顯出進出各個空間的所有掃描都是被追蹤的。正如倉庫裡的包裹會經過掃描,工人也受到監控,以求盡可能提高效率:每次輪班只能休息十五分鐘,另有三十分鐘無薪的用餐休息時間。每次輪班長達十小時。
這是較新的履行中心之一,特點在於有機器人來移動托盤上裝滿產品的沉重擱架單元。這些亮橘色的機器人叫「奇娃」(Kiva),會在混凝土地板上平穩滑行,宛如活生生的水蟲,依循程式設定好的邏輯懶洋洋旋轉,然後鎖定一條路線,到下一個等待托盤的工人那裡。接著,機器人往前移動,背著堆積如塔、重達一千三百六十公斤的購買物品。這支貼地機器人大軍移來移去,展現出一種毫不費力的高效率:它們搬運、旋轉、前進、重複。它們發出低沉的呼呼嗡嗡聲,但幾乎完全被作為工廠動脈、快速移動的傳送帶震耳欲聾的聲音淹沒。在這個空間裡,約二十三公里長的輸送帶運轉不歇。這讓轟鳴時時存在。 當機器人在無遮蔽的菱形格網後方表演著動作協調的運算芭蕾,工廠裡的工人可沒那麼心平氣和。要達到「揀貨速率」所造成的焦慮,也就是工人必須在分配的時間內選擇和包裝的物品數量,顯然帶來不良影響。我造訪時遇到的許多工人都戴著某種支撐繃帶,有護膝、肘部繃帶、護腕。我觀察到許多人似乎有傷,而帶我穿行過工廠的亞馬遜員工指著每隔固定距離設置的自動販賣機,裡頭「備有非處方止痛藥,供任何需要的人使用」。 機器人技術已成為亞馬遜物流寶庫的關鍵部分,雖然機器似乎保養得很好,相對應的人體卻好像成了次要考量。他們來到那裡完成機器人無法做到的特定、高精度的任務:在最短的時間內揀起並目視確認人們想送到家中的所有物件,那些東西奇形怪狀,從手機殼到洗碗精都有。人類是不可或缺的結締組織,把訂購的物品裝入貨櫃和卡車,送到消費者手上。然而,他們並不是亞馬遜機器中最有價值或最受信賴的組成部分。一天結束時,所有夥伴都必須通過一排金屬探測器才能離開。他們告訴我,這是有效的防盜措施。
在網際網路的各個層次裡,最常見的衡量單位之一是網路封包——從一個目的地發送並傳送到另一個目的地的基本資料單位。在亞馬遜,用來衡量的基本單位是棕色紙箱,那是眾所熟悉的該公司貨物容器,上面印有一個模擬人類微笑的彎曲箭頭。每個網路封包都有一個時間戳,稱為「存活時間」(time to live),資料必須在存活時間到期之前抵達目的地。在亞馬遜,紙箱也有顧客出貨需求所驅動的「存活時間」。如果箱子遲到了,會影響亞馬遜的品牌,最後也會損及獲利。因此,機器學習演算法受到極大的關注,演算法針對瓦楞紙箱和寄件袋的最佳尺寸、重量和強度的資料進行調整。這個演算法稱為「矩陣」(matrix),顯然沒有任何諷刺意味。每當有人報告物品損壞,這份報告就會成為數據點,說明未來該使用哪種箱子。下次寄送這種產品時,矩陣會自動指派新的箱子種類,不用人工輸入。這樣可以防止破損,以節省時間,增加獲利。然而,工人被迫不斷適應,使他們更難將知識付諸行動或習慣工作。
時間控制向來是亞馬遜物流帝國一貫的主題,工人的身體依照運算邏輯的節奏來行動。亞馬遜是美國第二大民營雇主,許多公司奮力效尤。很多大企業砸下重金投資自動化系統,想從人數更少的員工身上榨取更多勞力。效率、監控和自動化的邏輯,當今都一致轉向以運算的方法來管理勞工。亞馬遜倉庫混合著人機配送,是了解致力於自動化效能所做出的權衡取捨的重要地點。我們可以從這個地方開始思考勞工、資本和時間如何在人工智慧系統中交織在一起的問題。
(未完待續)
| 作者簡介 |
凱特•克勞馥Kate Crawford,微軟研究院(Microsoft Research)資深首席研究員、巴黎高等師範學院(École Normale Supérieure)「人工智慧與正義」課程首任主席、墨爾本大學明古尼雅特聘訪問學者(Miengunyah Distinguished Visiting Fellowship)。紐約大學AI Now研究院(AI Now Institute)共同創辦人,領導機器學習基金會(Foundations of Machine Learning)國際工作小組。
| 譯者簡介 |
呂奕欣,師大翻譯所筆譯組畢業,曾任職於出版公司與金融業,現專事翻譯。
人工智慧最後的祕密:權力、政治、人類的代價,科技產業和國家機器如何聯手打造AI神話?
作者 | AUTHOR
凱特•克勞馥 Kate Crawford
出版社 | PUBLISHER
臉譜
書號 | ISBN
9786263150997
出版日期 | PUBLICATION DATE
2022/05/05
出貨地 | PLACE OF DEPARTURE
台灣